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Abstract

A probability model is developed for determining the average properties of the comb-branched polymer formed through random
connection of two different types of polymer chains with one type as the backbone and the other as side chains. M,,, M,, and other higher
average molecular weights can all be described as a function of the reaction conversion and the average properties of two polydispersed
polymer chains directly without the knowledge of the whole distributions. The simulation results indicate that, as the molecular weight of the
backbone polymer is usually much larger than that of the side chain polymer, the polydispersity of the resulting comb polymers is mainly
determined by the polydispersity of the backbone at the end of the reaction. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Branched polymers with well-defined chain structures
often provide many special properties and can therefore
be readily utilized in a wide range of practical applications
[1-5]. In particular, synthesis and characterization of
polymers with comb branching has recently received
much attention. A comb polymer has a backbone with
attached side chains. Since the side and backbone chains
can have different chemical compositions, such comb co-
polymers can exhibit special functions in many applications.
As many important mechanical and physical properties of
polymeric materials depend on and vary considerably with
their molecular weight distribution (MWD), a quantitative
description of the resulting MWD of comb copolymers has
long been an important research subject.

Despite the large number of studies on the theory of
network formation for polymers in the literature [6—26],
very few studies have been published on the theory of
formation of comb-branched polymers. Recently, Zhu et
al. [27-30] developed analytical expressions for the
MWD of comb-branched copolymer assembled from back-
bones and side chains having uniform and/or Schulz—Zimm
distribution. The MWDs of backbones and side chains are
needed only when the MWD of the resulting comb-
branched polymer is to be predicted. For the average
molecular weights, no specific MWDs are needed. The
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number-average and weight-average molecular weights of
the resulting comb-branched polymer can be calculated
provided the number-average and weight-average mol-
ecular weights of backbones and side chains, as well as
the branching density, are given. In practice, it is often
difficult to obtain the whole MWD for polymers. The
knowledge of the average properties of polymers, instead
of the whole distribution, is often sufficient for many
practical applications.

The ‘In—out’ recursive probability model presented by
Macosko and Miller [17-19] has been a useful approach
for obtaining the average properties without the need to
calculate the MWDs. Recently, Shiau [31-35] has further
extended the concept of the in—out analysis to apply to
different classes of step-growth polymer systems. The
objective of this paper is, based on the in—out recursive
analysis, to develop a statistical approach for obtaining the
average molecular weights of the comb-branched co-
polymer formed through random connection of two differ-
ent types of polymer chains with one type as the backbone
and the other as side chains.

2. Theory

Consider the formation of comb polymers through
random grafting between two different types of pre-formed
polymers—n, moles of the backbone ‘polymer A’ and ng
moles of the side chain ‘polymer B’. In general, backbone
and side chains might have different chemical properties
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Fig. 1. Schematic representation of the comb-branched polymer.

and thus separate MWDs. It is assumed that every mono-
meric unit on the backbone polymer A has a reactive site ‘a’
which can react with the coreactive chain end ‘b’ on the side
chain polymer B. Since there is only one coreactive chain
end ‘b’ on each side chain polymer B, further branching on
the side chains is disallowed. Thus comb polymers having a
backbone (polymer A) with different numbers of attached
side chains (polymer B) are formed (see Fig. 1). In the
following derivation, we will retain Flory’s simplifying
assumptions [8]: (1) all functional groups of the same type
are chemically equivalent and hence equally reactive; (2) the
reactivity of a given group is independent of the size or
structure of the molecule to which it is attached.

Since polymer A is polydispersed, let ny; (i=1,2,...)
represent the number of moles of ‘polymer A with i mono-
meric units’ (denoted as A;) and its molecular weight is iM .
Similarly, since polymer B is polydispersed, let ng; (i =
1,2,...) represent the number of moles of ‘polymer B with
i monomeric units’ (denoted as B;) and its molecular weight
is iMy. Here, M, and Mg represent the molecular weights of
‘polymer A with one monomeric unit” and ‘polymer B with
one monomeric unit’, respectively. By our definition,
YiZina; =na and Y72 ng; =ng. Denote ny/ny = p;
and ng,;/ng = q;, where p; represents the number fraction
of polymer A with i monomeric units and g; represents the
number fraction of polymer B with i monomeric units.

Let a represent the fraction of sites ‘a’ which have
reacted and S the fraction of sites ‘b’ which have reacted.
In other words, «, also referred to as the branching density,
represents the probability of a randomly chosen ‘a’ reacting
with ‘b’ and B represents the probability of a randomly
chosen ‘b’ reacting with ‘a’. Then, the average number of
sites ‘a’ reacted for polymer A with i monomeric units at
conversion « is:

Maji = ia. (1)

Note that every monomeric unit on the backbone polymer A
has a reactive site ‘a’. By the law of total probability for
expectation, the average number of sites ‘a’ reacted for
polymer A at conversion «, also termed as the average

number of branching points per backbone chain, is given by:

A =D Pidn) = @D (ip) = a(M, \/M)) )
i=1 i=1

Note that Y2 (ip;) is replaced by M, o/M (see Appendix
A). M, 5 represents the number-average molecular weight
of polymer A. On the other hand, since there is only one
coreactive chain end ‘b’ on each side chain polymer B, the
average number of sites ‘b’ reacted for polymer B at conver-
sion «, also termed as the average number of branching
points per side chain, is given by:

Ag = B. 3)
By stoichiometry, we have:

naAs = npAg. 4)

Substituting Eqgs. (2) and (3) into Eq. (4) gives:

naa(M, AIMy) = ngB )
or
B= (nA/nB)(Mn,A/MA)a =ra (6)

where r = (nA/nB)(Mn’A/MA).
2.1. Number-average molecular weight

By definition, M, is just the total mass, m,yy, divided by
the number of molecules present at conversion a, g
Then:

Mn = mlotal/ntotal (7)

where
Myoral = Z (na;iMy) + Z (ng;iMg) = naMy o + ngM, g
=1 =1
(8)

Mol = Na + g — naAy = np + ng — any(M,a/My)  (9)
or

Mol = Na + g — ngAg = ny + ng — PBng. (10)
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Note that n, + np is the total number of moles of polymer A
and polymer B initially in the system and naA 5 (or ngAg) is
the total number of bonds formed at conversion «. Since
each bond binds two molecules into one, 1, calculated in
Eq. (11) or (12), represents the number of molecules present
at conversion «. Therefore, M, of the resulting copolymer is
a function of M, 5, M, and conversion a.

2.2. Weight-average molecular weight

Pick a reactive site ‘a’ at random from a randomly chosen
backbone polymer A with i monomeric units (denoted as A;)
as shown in Fig. 1. The random variable, Wy’ ', is the weight
attached to ‘a’ looking out from its parent molecule in the
direction —1>. Based on assumptions (1) and (2) described

0, pP=

Wl())ut — )
in
Wa,k’ P =

earlier, W;’ft is independent of the number of monomeric
units of the backbone polymer A to which the randomly
chosen ‘a’ belongs; therefore, W;‘}t can be represented as
W™, Then:

P=1-«a (if site ‘a’ does not react)

WQUI — O
: Wy, j", P=ag;(j=1,2,..) (ifsite ‘a’ reacts with site ‘b’)

where P denotes probability and Wli{‘i is the weight attached
to site ‘b’ of side chain ‘polymer B with j monomeric units’
(denoted as B;) looking along — into its parent molecule.
The probability that a randomly chosen reactive site ‘b’
belongs to B; is g;. By the law of total probability for

backbone , Ax

e
-

F F Y rF
v v o o (polymer A)
Wa,kin T4 l 1 Waoul
W 13 12 Wy
side chain , B;
(polymer B)

Fig. 2. Schematic illustration of the comb-branched polymer formed
through random connection of the backbone and the side chain (Here,
‘@’represents the reactive site on the backbone and ‘O’ represents the
reactive site on the side chain).

l—ra

expectation, we have:

) = 3 [0 )aq ] + 001 = o = a3 [(vE)]
j= =
(11)

Similarly, pick areactive site ‘b’ at random from a randomly
chosen side chain polymer B with i monomeric units
(denoted as B;) as shown in Fig. 2. The random variable,
Wi, is the weight attached to ‘b’ looking out from its
parent molecule in the direction — . Based on assumptions
(1) and (2) described earlier, Wy is independent of the
number of monomeric units of the side chain polymer B

out

to which the randomly chosen ‘b’ belongs, therefore, Wy;
can be represented as Wy™. Then:

(if site ‘b’ does not react)

kp/ Z (kpk)] (k=1,2,...) (f site ‘b’ reacts with site ‘a’)

k=1

where P denotes probability and W;‘fk is the weight attached
to site ‘a’ of backbone ‘polymer A with kK monomeric units’
(denoted as A;) looking along — into its parent molecule.
Since the number of reactive sites on all the Ay is nakp; and
the total number of reactive sites ‘a’ in the system is
> i1 (nakpy), the probability that a randomly chosen reac-
tive site ‘a’ belongs to Ay can be denoted as kpy/ > 72 (kpy).

By the law of total probability for expectation, we have:

()

awwyzz{qwﬂy{@y20m4}+ml—m)

k=1 k=1

ENNLIRD [ ko (W) | (12)
k=1

where Y 2| (kpy) is replaced by M, A/M, (see Appendix A).

Considering the polymerization between the polydis-
persed backbone chains polymer A and the polydispersed
side chains polymer B, we can derive, for a randomly
chosen backbone polymer A with k& monomeric units
(denoted as Ay):

k—1
Woh = kM, + D" Wit
=1

k=1,2,..) (13)

where kM, is the molecular weight of A; and Wy;' is the
weight attached to the ith branch of a randomly chosen A,.
Note that A; has k reactive sites and W;L,-“ (i=12,...,k—1)
are independent random variables with the same distribu-
tion, W', Taking the expectation of Eq. (13) leads to (see
Appendix B):

d;wzmh+m—nﬂmm (k=1,2,.). (14
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Multiplying both sides of Eq. (11) by kp, and taking the
summation from k = 1 to oo, we have

S [inE(Wi)] = M S 0po) + EWE™)S. [k — ]
k=1 k=1 k=1

= My AMy AIM 5 + E(WR" )My AIMpA) My /My — 1).
(15)

Similarly, for a randomly chosen side chain polymer B with
i monomeric units (denoted as B;), we have:

Woy=jMg  (j=12..) (16)
where jMy is the molecular weight of B,. Taking the expec-
tation of Eq. (16) leads to:

E(Wg‘;) =My (j=1,2,..). (17
Multiplying both sides of Eq. (17) by ¢; and taking the
summation from i = 1 to oo, we have:

J

o0

[GE(W)] = M5 > Gap) = W, (18)
j=1

Substituting Eqgs. (15) and (18) into Eqs. (11) and (12),
E(W™) and E(Wg") can be solved as:

EW") = aM,p (19)

E(Ws™) = ra[M, o + aM, g(My A/M5 — D). (20)

The molecular weight, W,;, of the entire molecule to
which a randomly chosen backbone A; belongs, will just
be the molecular weight of A; plus the weights attached to
i reactive sites looking out from each site. Therefore:

Wai =My + > Wott (i=1,2,.). (1)
J=1

Taking the expectation of this equation leads to (see

Appendix B):

E(Wy,) = iMy + iE(W") (i=1,2,..). (22)

Similarly, Wﬁ?,»t, the molecular weight of the entire mole-
cule to which a randomly chosen side chain B; belongs, will
just be the molecular weight of B; plus the weight attached
to its chain end. Then:

Wy, = iMg + W™ (i=12,..). (23)
Taking the expectation of this equation leads to:

E(Wg,) = iMg + E(Wg™) (i=1,2,..). (24)

Let ya,; and yg; denote the weight fraction of backbone A;
and the weight fraction of side chain B; in the system,

respectively:
YA = ”A,iiMA/[Z (niMp) + (nB,iiMB)]
i=1 i=1

= np iMa/(naAM,, o + ngM, p) (25)

YB,i = ”B,iiMB/I:Z (npiMa) + Z (”B,iiMB)]

i=1 i=1

= np ;iMp/(naMy, 5 + ngM, p). (26)

By definition, M, the first moment of the MWD, can be

expressed as:
My = EW) = A, EWa)] + > [ypE(W )]
= i=1

i=1

= { Z [na dMAE(W )]

i=1

+ [”B,iiMBE(WB,i)]}/(nAMn,A +ngM,p)  (27)
i—1

1

where

Z [VlA,iiMAE(WA,i)] = np Z {piiMA[iMA + iE(W;ut)]}

=1 i=1

= nAMa[My + E(W,")] Z @*py)

=1
= nAMn,A[MW,A + E(W;m)MW’A/MA]. (28)
Note that Y, (i°p;) is replaced by M, My A/Mj (see
Appendix A). Similarly:

Z [np ;iMgE(Wg ;)] = ng Z {qiiMB [iMB + E(ng)]}
= i=1

= nB[Mé > (g + MgE(Wg™) > (iq»]
i=1 i=1
= nBMn’B [MW,B + E(ng)] (29)

Since E(W") and E(Wg") are given in Egs. (21) and (22),
substituting Eqgs. (29) and (30) into Eq. (28) gives:

My = ya(My, o + oM, g M AIM )

+yp{Myp + ra[Mys + aM, g(My /My — 1]}
(30)

where y, and yg represent the initial weight fraction of back-
bone polymer A and the initial weight fraction of side chain
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polymer B in the system, respectively:

YA = Z (nA,iiMA)/[Z (npiMy) + Z (nB,iiMB)]
i=1 = 5

= nAMy A/(naAM,, o + ngM, p) (31)

B = Z (nB,iiMB)/[Z (naiMa) + Z (nB,iiMB)]
i= i= i=

= ngM, g/(ny\M,, 5 + ngM,p). (32)

Therefore, M,, of the resulting comb polymer, given in Eq.
(30), is a function of M, 5, M, g, M, o, M, g and conversion
a. Gelation occurs when M,, diverges (becomes infinite).
As shown in Eq. (30), M, will never diverge for0 = a < 1.

2.3. Other higher average molecular weights

In this section, a general formula will be developed for
any other higher average molecular weights. For instance,
M, is defined as E(WZ)/E(W). Since the formula for E(W) is
given in Eq. (27), the remaining work is to derive E(Wz). To
find a general formula, E(W") will be developed instead of
E(W?). In general, E(W") can be developed by taking the
nth power on both sides of Eqs. (13) and (16) and repeating
the calculations as described earlier. Then:

n k—1
( ;jk) =K'"M} + nk"lMZ1< > W;’;“)

i=1

n(n — 1) 2
n—2qxn—2 out
kM (§ Wa,)

i=1

_ 3
nn—1Dn—=2) 5 a5 o)

i=1

k—1 n
+ ( > W§$‘) (i=12..) (33)
i=1

(win)' =My G=1,2,..0. (34)
As described before, E[(W;'fk)”] and E[(Wti,t‘]-)’l] can be
obtained by taking the expectation of the above equations
(see Appendix B). Then, >, {kp;E[(W,})"]} and
> 21 {g;E[(Wp;)"]} can be derived. Similar to the develop-
ment of Eqgs. (11) and (12), if the random variables (W")"
and (Wg")" are used instead of W' and W™, respectively,
we have:

)= oS farf(v)') <ss>

E[(WS™)"] = ra(M /M, ») i {kpkE[(W;{‘k)"]}. (36)
k=1

Thus, E[(Wg"")"] and E[(Ws")"] can be determined.
Taking the nth power on both sides of Egs. (21) and (23)
yields:

Wr, = i"M4 + ni""' M}~ ‘(ZW”“)

j=1
n(n = 1) ?
2! n 2Mn 2(2 out)
3
nn — (n —2) 3 W
+ 3' %M %(Z l)
(Z °‘“) (i=12,..) (37)

; =1 n—1
Wg,; = i"Mg + ni"" "My wa

n = 1) w2y m
+ 5 ZMA Z(Wl())ut)

+ nn—1)(n —2) -3
3!

(i=1,2,..) (38)

ME3 (WY +-e + (WY

Thus, E(Wj ;) and E(Wg;) can be obtained by taking the
expectation of the above equation (see Appendix B).
Then, E(W"), by definition, can be expressed as:

(o)

EW") = i [ BWA)] + D e E(Ws,)]

P i=1
D [aMaEWR)] + D [ng M E(Wg,)]

_ =l ) i=1_ (39)
naMy o + ngM, g

where Y2 [na;Ma;E(WA )] and Y72 [ng My ;E(Wg )]
can be derived in a similar way as before.

3. Results and discussion

In the application of the above-developed model, only the
knowledge of the average properties of backbone and side
chains polymers, instead of their complete molecular weigh
distributions, is needed. An example is illustrated below for
the system in which comb-branched polymers are formed
through random connection of two different types of poly-
mers chains with one type as the backbone (polymer A) and
the other as side chains (polymer B).

The ratio of the two average molecular weights M,/M,,
referred to as the polydispersity index (PI), depends on the
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n, =1,n, =40

average molecular weight

0 0.1 02 03 04 0.5

conversion

Fig. 3. M, and M,, versus conversion « for the resulting comb-branched
polymer, — for case I, ----- for case 1II, --- for case III, - - - for case IV
(na = 1 and ng = 40, which belongs to the first category).

breadth of the MWD and is a measure of the polydispersity
of a polymer. The value of PI would be unity for a perfectly
monodisperse polymer. PI is greater than unity for all actual
polymers and increases with increasing polydispersity.
Thus, we define:

PIA = MW,A/MH,A (40)
PIB = MW,B/MH,B (41)
Pl = M, /M,. (42)

Since only the backbone polymer A can react with the side
chain polymer B and polymers of the same type cannot react
with each other, this system can be divided into three cate-
gories: (i) when na (M, A/M,) > ng, the side chain polymer
B will be all exhausted at the end of the reaction (i.e. 8 = 1).
Subsequently only the resulting comb polymers and the
unreacted backbone polymer A exist in the system. Thus,
one obtains that at the end of the reaction 8 =1 and a =
(ng/np)(MAIM, 5). Note that nAa(Mn’A/MA) =ngPB in
Eq. (5); (ii) when na(M, A/M,) < ng, the backbone poly-
mer A will be all exhausted at the end of the reaction (i.e.
a = 1). Subsequently only the resulting comb polymers and
the unreacted side chain polymer B exist in the system.
Thus, one obtains that at the end of the reaction a =1
and B = (”A/”B)(Mn,A/MA); (iii) when nA(Mn,A/MA) = ng,
the backbone polymer A and the side chain polymer B will
be all exhausted at the end of the reaction (i.e. « = 3 = 1).
Subsequently only the resulting comb polymers exist in the
system.

In the following calculation, It is assumed that M, = 100,
Mn, A = 8000 and MH’B = 120. To investigate the effects of
PI, and PIz on PI, four cases will be discussed. Case I

0
ol  no=ln,=40
70
.mr-mm,_\_‘.ﬁ\
o AN
PI (1IL,IV) ~

polydispersity index

0 01 02 03 04 0.5

conversion

Fig. 4. PI versus conversion « for the resulting comb-branched polymer, —
for case I, ----- for case 11, --- for case III, - - - for case IV (ny, = 1 and ng =
40, which belongs to the first category).

represents the case of PI, = 2 and PIz = 5. Case II repre-
sents the case of PI, = 2 and PIz = 10. Case III represents
the case of PI, =4 and PIg = 5. Case IV represents the
case of PI, = 4 and PI; = 10.

Figs. 3 and 4 are displayed for the example of n, = 1 and
ng = 40. Since ny(M, o/M») > ng, this belongs to the first
category described before, i.e. at the end of the reaction 8 =
1 and a = (ng/ny)(Ma/M, ») = 0.5. Fig. 3 shows that all
four cases lead to the same plot of M,,, which is consistent
with the concept that the polydispersity of the backbone
and the side chain does not affect M, of the resulting
comb-branched polymers. Note that M, increases slowly
for 0=a =045 and then increases rapidly for
0.45 = a = 0.5. Howeyver, MW for the four cases increases
nearly linearly within the whole range of «. Cases I and II
have similar plots of M, because PI, = 2 for both. Since
M, 5 is much larger than M, g, PI of the resulting comb
polymers is mainly determined by PI, while Plgz only
slightly affects PI of the resulting comb polymers. Similarly,
cases III and IV have similar plots of M,, because PI, = 4
for both. However, M, for cases III and IV is about twice
that for cases I and II within the whole conversion range.
Fig. 4 shows that PI for case III and case IV is about two
times of that for case I and case II within the early conver-
sion range. It also indicates that all PI decrease with an
increase of the conversion. That is, the breadth of MWD
of the resulting comb polymer becomes smaller with an
increase of the conversion for all four cases. In addition,
PI for cases I and II approaches two and PI for cases III
and IV approaches four at & = 0.5. Note that at the end of
the reaction (i.e. @ = 0.5.) the side chain polymer B will be
all exhausted and subsequently only the resulting comb
polymers and the unreacted backbone polymer A exist in
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n,=1,n, =120

average molecular weight

0 02 04 06 08 1

conversion

Fig. 5. M, and M,, versus conversion « for the resulting comb-branched
polymer, — for case I, ----- for case II, --- for case III, - - - for case IV
(na = 1 and ng = 120, which belongs to the second category).

the system. Therefore, the polydispersity of the resulting
comb polymers is mainly determined by the polydispersity
of the backbone at the end of the reaction.

Figs. 5 and 6 are displayed for the example of n, = 1 and
ng = 120. Since na(M,A/M,) < ng, this belongs to the
second category described before, i.e. at the end of the reac-
tion @ = 1 and B = (np/ng)(M, A/M,) = 2/3. Fig. 5 shows
that all four cases lead to the same plot of M,,. Note that M,
increases slowly within the whole conversion range. On the

140
n,=1,n, =120
120
100 s PI(IL,IV)
A
» /,/f’
% P
P
g 80 //,-/’
J?:‘ /// .
-E /// 7
5] 7
2 ®
=S
S PI(I,I)
S 4
20
0
0 02 04 06 08 1

conversion

Fig. 6. PI versus conversion a for the resulting comb-branched polymer,
— for case I, ----- for case II, --- for case III, - - - for case IV (ny, =1
and ng = 120, which belongs to the second category).

80000

n,=1,n; =80

70000

average molecular weight

0 02 04 06 08 1

conversion

Fig. 7. M,, and M,, versus conversion a for the resulting comb-branched
polymer, — for case I, ----- for case II, --- for case III, - - - for case IV
(npn = 1 and ng = 80, which belongs to the third category).

other hand, M,, for four cases increases nearly linearly
within the whole range of «. Cases I and II have similar
plots of M,, because PI, = 2 for both. Similarly, cases III
and IV have similar plots of M,, because PI, = 4 for both.
However, M,, for cases III and IV is about twice that for
cases I and II within the whole reaction range. Fig. 6 shows
that all PI first increase and then drop slightly during the
reaction. It also indicates that PI for cases IIIl and I'V is about
twice that for cases I and II within the whole conversion
range. Note that at the end of the reaction (i.e. @ = 1) the
backbone polymer A will be all exhausted and subsequently
only the resulting comb polymers and the unreacted side
chain polymer B exist in the system. Therefore, the breadth
of MWD of the resulting comb polymer becomes very large
at the end of the reaction.

Figs. 7 and 8 are displayed for the example of n, = 1 and
ng = 80. Since ny (M, A/M») = ng, this belongs to the third
category described before, i.e. at the end of the reaction o =
B = 1. Fig. 7 shows that all four cases lead to the same plot
of M,. Note that M, increases slowly for 0 =< @ =< 0.9 and
then increases rapidly for 0.9 = a < 1. However, M,, for
the four cases increases nearly linearly within the whole
range of «. Cases I and II have similar plots of M, because
PI, = 2 for both. Similarly, cases III and IV have similar
plots of M, because PI, = 4 for both. However, M,, for
cases Il and IV is about twice that for cases I and II within
the early conversion range. Fig. 8 shows that all PI first
increase slightly and then drop rapidly during the reaction.
In addition, PI for cases I and II approaches two and PI for
cases III and IV approaches four at the end of the reaction.
Therefore, Fig. 8 exhibits the characteristics of both Figs. 4
and 6. Note that at the end of the reaction the backbone
polymer A and the side chain polymer B will be all



2842 L.-D. Shiau / Polymer 43 (2002) 2835-2843

polydispersity index

0 02 04 06 08 1

conversion

Fig. 8. PI versus conversion a for the resulting comb-branched polymer,
— for case I, ----- for case II, - - for case III, - - - for case IV (n, = 1 and
ng = 80, which belongs to the third category).

exhausted and subsequently only the resulting comb
olymers exist in the system.

4. Conclusions

A model is presented in this paper, without the calculation
of the whole distribution, to determine M,,, M,, and PI of the
resulting comb polymer, based on the random connection of
two different types of polymer chains with one type as the
backbone and the other as side chains, as a function of the
reaction conversion and the average properties of two poly-
dispersed reactive polymers.

The major advantage of this systematic approach is that,
once the basic equations are set up, various average mole-
cular weights can be directly derived by taking nth power on
both sides of these equations and, then, taking the expecta-
tion of thus-obtained equations. The developed model in
this paper provides a general algorithm to solve for these
average properties by computers.
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Appendix A

For the polydispersed polymer A, various average

molecular weights are defined as:

My = (niMy)iny (A1)
P

S 2802
; (nA,,l MA)
D (naiMy)

(A2)

i (nasi*M3)

M= (A3)

i (nai®M3)

Then, the following equations can be derived based on the
average properties of polymer A:

00 o0

D (ip) = D (iMpnp IMany) = My AIM, (A4)
=1 =1

00

f @p) =Y (PMAnadMAnL) = My aMy AIM3  (AS)
i=1 i=1

> @y => (iSMz”A,i/MinA) = My AMy \M, 7M.
= i

=

(A6)

Similar expressions can be derived for polymer B. Thus:

> (ig;) = M, 5/Mg (A7)
i=1

> (%q;) = M,z M5 IM (A)
i=1

Z (iSCIi) = Mn,BMw,BMz,B/M%- (A9)
i=1

Appendix B

Based on probability theory [36], if X;,X,,...,X; are
independent random variables with the same distribu-
tion—X, then:

S f
E(in) = > EX;) = fEX) (B1)
i=1 i=1

i=
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f f f f
E( ) ZXZ + Z Z XX | = (sz) +E Z Z XX | = ZE(X,?) Z Z E(X,-)E(Xj)
i=1 i=1 j=1,j#i i=1 j=1,j#i i=1 i=1 j=1j#
= fEX) + f(f — DEX)) (B2)
f 3 f ff
E(ZX) ZX? +3> > XX+ z z Z XXX,
i=1 i=1 j=1j%i i=1 j=1j7#i k=1k#i#j
f f f f f f
=E<ZX?)+3E Y xix | +ED D> D> Xxxx
i=1 i=1 j=1j#i i=1 j=1j#i k=1k##i#j
f ;S f
=Y E(x}) +3 Z Z EXECH) +Y > Y EX)ECOEX)
i=1 i=1 j=1j7#i i=1 j=1j7#i k=1k#i#j
= fEXY) + 3f(f — DEXDEX) + f(f — D(f — 2(EX))’ (B3)
/ " z n! n < n! n
ElS x| =E — X X5 X, - E(x"x®-X)
(; l) "Mz%’fzo nylnyleonyl b ! l11,ilzwz~,nf20 nylglonyl ( L )
(ny +ny + -+ ny=n) (ny +ny + -+ np=n)

< n!
N Z nylnyl---ngl
ny,Ny,.. ,nf>0 1-7%2 f
(ny +ny + - +np=n)
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